Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Biol. Res ; 52: 58, 2019. graf
Article in English | LILACS | ID: biblio-1100910

ABSTRACT

BACKGROUND: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte apoptosis via autophagy regulation and the underlying mechanisms of MALAT1 regulating autophagy. METHODS: Cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The autophagy level was assessed using GFP-LC3 immunofluorescence and western blot analysis of autophagy-related proteins. RNA pull-down and RNA immunoprecipitation (RIP) was performed to analyze the binding of MALAT1 and EZH2. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the binding of TSC2 promoter and EZH2. The cell apoptosis was evaluated using TUNEL staining and western blot analysis of apoptosis-related proteins. RESULTS: H/R injury increased MALAT1 expression in cardiomyocytes. Furthermore, MALAT1 overexpression inhibited, whereas MALAT1 knockdown enhanced the autophagy of cardiomyocytes. Moreover, MALAT1 overexpression recruited EZH2 to TSC2 promoter regions to elevate H3K27me3 and epigenetically inhibited TSC2 transcription. Importantly, TSC2 overexpression suppressed mTOR signaling and then activated the autophagy. Further results showed that MALAT1 inhibited proliferation and enhanced apoptosis of cardiomyocytes through inhibiting TSC2 and autophagy. CONCLUSION: These findings demonstrate that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis through autophagy inhibition by regulating TSC2-mTOR signaling.


Subject(s)
Animals , Mice , Autophagy/physiology , Apoptosis/physiology , Myocytes, Cardiac/metabolism , TOR Serine-Threonine Kinases/genetics , RNA, Long Noncoding/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Autophagy/genetics , Signal Transduction , Blotting, Western , Fluorescent Antibody Technique , Apoptosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , Chromatin Immunoprecipitation , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
2.
Journal of Southern Medical University ; (12): 692-698, 2019.
Article in Chinese | WPRIM | ID: wpr-773547

ABSTRACT

OBJECTIVE@#To optimize DNA library construction in non-crosslinked chromatin immunoprecipitation coupled with next-generation sequencing (Native ChIP-seq) to obtain high-quality Native ChIP-seq data.@*METHODS@#Human nasopharyngeal carcinoma HONE1 cell lysate was digested with MNase for release of the nucleosomes, and the histone-DNA complexes were immunoprecipitated with specific antibodies. The protein component in the precipitate was digested with proteinase K followed by DNA purification; the DNA library was constructed for sequence analysis.@*RESULTS@#Compared with the conventional DNA library construction, Tn5 transposase method allowed direct enrichment of the target DNA after Tn5 fragmentation, which was simple, time-saving and more efficient. The IGV visualized map showed that the information obtained by the two library construction methods was consistent. The sequencing data obtained by the two methods revealed more signal enrichment with Tn5 transposase library construction than with the conventional approach. H3K4me3 ChIP results showed a good reproducibility after Tn5 transposase library construction with a signal-to-noise ratio above 50%.@*CONCLUSIONS@#Tn5 transposase method improves the efficiency of DNA library construction and the results of subsequent sequence analysis, and is especially suitable for detecting histone modification in the DNA to provide a better technical option for epigenetic studies.


Subject(s)
Humans , Chromatin Immunoprecipitation , DNA , Gene Library , High-Throughput Nucleotide Sequencing , Reproducibility of Results , Sequence Analysis, DNA
3.
Journal of Korean Medical Science ; : e100-2019.
Article in English | WPRIM | ID: wpr-764935

ABSTRACT

BACKGROUND: Increased expression of MDR1 gene is one of the major mechanisms responsible for multidrug resistance in cancer cells. Two alternative promoters, upstream and downstream, are responsible for transcription of MDR1 gene in the human. However, the molecular mechanism regarding the transactivation of MDR1 upstream promoter (USP) has not been determined. METHODS: Dual-luciferase reporter gene assays were used to assess the effect of Nkx-2.5 on MDR1 USP activity using reporter plasmids for human MDR1 USP and its mutants. MDR1 mRNA level was examined by quantitative real-time PCR. The direct binding of Nkx-2.5 to the USP of MDR1 was evaluated by promoter enzyme immunoassays and chromatin immunoprecipitation assays.


Subject(s)
Humans , Breast Neoplasms , Breast , Chromatin Immunoprecipitation , Drug Resistance, Multiple , Genes, Reporter , Immunoassay , Immunoenzyme Techniques , Phenotype , Plasmids , Real-Time Polymerase Chain Reaction , RNA, Messenger , Transcriptional Activation
4.
Journal of Gynecologic Oncology ; : e77-2019.
Article in English | WPRIM | ID: wpr-764546

ABSTRACT

OBJECTIVES: Pseudolaric acid B (PAB) has been shown to inhibit the growth of various tumor cells, but the molecular details of its function are still unknown. This study investigated the molecular mechanisms by which PAB induces apoptosis in HeLa cells. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to investigate the effect of PAB treatment in various cervical cancer cell lines. Annexin V/propidium iodide staining combined with flow cytometry and Hoechst 33258 staining were used to assess PAB-induced apoptosis. Additionally, we performed bioinformatics analyses and identified a paired box 2 (PAX2) binding site on the BAX promoter. We then validated the binding using luciferase and chromatin immunoprecipitation assays. Finally, western blotting assays were used to investigate PAB effect on the Wnt signaling and the involved signaling molecules. RESULTS: PAB promotes apoptosis and downregulates PAX2 expression in HeLa cells in a time- and concentration-dependent manner. PAX2 binds to the promoter of BAX and inhibits its expression; therefore, PAX2 inhibition is associated with increased levels of BAX, which induces apoptosis of HeLa cells via the mitochondrial pathway. Additionally, PAB inhibits classical Wnt signaling. CONCLUSION: PAB effectively inhibits Wnt signaling and PAX2 expression, and increases BAX levels, which induce apoptosis in HeLa cells. Therefore, PAB is a promising natural molecule for the treatment of cervical cancer.


Subject(s)
Humans , Apoptosis , Binding Sites , Bisbenzimidazole , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , Computational Biology , Flow Cytometry , HeLa Cells , Luciferases , Mitochondria , Uterine Cervical Neoplasms , Wnt Signaling Pathway
5.
Cancer Research and Treatment ; : 992-1008, 2018.
Article in English | WPRIM | ID: wpr-715626

ABSTRACT

PURPOSE: Studies have found that long noncoding RNA HEIH (lncRNA-HEIH) is upregulated and facilitates hepatocellular carcinoma tumor growth. However, its clinical significances, roles, and action mechanism in colorectal cancer (CRC) remains unidentified. MATERIALS AND METHODS: lncRNA-HEIH expression in CRC tissues and cell lines was measured by quantitative real-time polymerase chain reaction. Cell CountingKit-8, ethynyl deoxyuridine incorporation assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and nude mice xenografts assays were performed to investigate the roles of lncRNA-HEIH. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were performed to investigate the action mechanisms of lncRNA-HEIH. RESULTS: In this study, we found that lncRNA-HEIH is significantly increased in CRC tissues and cell lines. lncRNA-HEIH expression is positively associated with tumor size, invasion depth, and poor prognosis of CRC patients. Enhanced expression of lncRNA-HEIH promotes CRC cell proliferation and decreases apoptosis in vitro, and promotes CRC tumor growth in vivo. Whereas knockdown of lncRNA-HEIH inhibits CRC cell proliferation and induces apoptosis in vitro, and suppresses CRC tumor growth in vivo. Mechanistically, lncRNA-HEIH physically binds to miR-939. The interaction between lncRNA-HEIH and miR-939 damages the binding between miR-939 and nuclear factor κB (NF-κB), increases the binding of NF-κB to Bcl-xL promoter, and promotes the transcription and expression of Bcl-xL. Moreover, Bcl-xL expression is positively associatedwith lncRNA-HEIH in CRC tissues. Blocking the interaction between lncRNA-HEIH and miR-939 abolishes the effects of lncRNA-HEIH on CRC tumorigenesis. CONCLUSION: This study demonstrated that lncRNA-HEIH promotes CRC tumorigenesis through counteracting miR-939-mediated transcriptional repression of Bcl-xL, and suggested that lncRNA-HEIH may serve as a prognostic biomarker and therapeutic target for CRC.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinogenesis , Carcinoma, Hepatocellular , Cell Line , Cell Proliferation , Chromatin Immunoprecipitation , Colorectal Neoplasms , Deoxyuridine , DNA Nucleotidylexotransferase , Heterografts , Immunoprecipitation , In Vitro Techniques , Luciferases , Mice, Nude , Prognosis , Real-Time Polymerase Chain Reaction , Repression, Psychology , RNA , RNA, Long Noncoding
6.
Genomics, Proteomics & Bioinformatics ; (4): 342-353, 2018.
Article in English | WPRIM | ID: wpr-772969

ABSTRACT

Transcriptional regulation is critical to cellular processes of all organisms. Regulatory mechanisms often involve more than one transcription factor (TF) from different families, binding together and attaching to the DNA as a single complex. However, only a fraction of the regulatory partners of each TF is currently known. In this paper, we present the Transcriptional Interaction and Coregulation Analyzer (TICA), a novel methodology for predicting heterotypic physical interaction of TFs. TICA employs a data-driven approach to infer interaction phenomena from chromatin immunoprecipitation and sequencing (ChIP-seq) data. Its prediction rules are based on the distribution of minimal distance couples of paired binding sites belonging to different TFs which are located closest to each other in promoter regions. Notably, TICA uses only binding site information from input ChIP-seq experiments, bypassing the need to do motif calling on sequencing data. We present our method and test it on ENCODE ChIP-seq datasets, using three cell lines as reference including HepG2, GM12878, and K562. TICA positive predictions on ENCODE ChIP-seq data are strongly enriched when compared to protein complex (CORUM) and functional interaction (BioGRID) databases. We also compare TICA against both motif/ChIP-seq based methods for physical TF-TF interaction prediction and published literature. Based on our results, TICA offers significant specificity (average 0.902) while maintaining a good recall (average 0.284) with respect to CORUM, providing a novel technique for fast analysis of regulatory effect in cell lines. Furthermore, predictions by TICA are complementary to other methods for TF-TF interaction prediction (in particular, TACO and CENTDIST). Thus, combined application of these prediction tools results in much improved sensitivity in detecting TF-TF interactions compared to TICA alone (sensitivity of 0.526 when combining TICA with TACO and 0.585 when combining with CENTDIST) with little compromise in specificity (specificity 0.760 when combining with TACO and 0.643 with CENTDIST). TICA is publicly available at http://geco.deib.polimi.it/tica/.


Subject(s)
Humans , Binding Sites , Chromatin Immunoprecipitation , Gene Expression Regulation , Hep G2 Cells , K562 Cells , Promoter Regions, Genetic , Sequence Analysis, DNA , Transcription Factors , Metabolism , Transcription, Genetic
7.
Journal of Breast Cancer ; : 112-123, 2018.
Article in English | WPRIM | ID: wpr-714870

ABSTRACT

PURPOSE: The incidence and mortality of breast cancer is increasing worldwide. There is a constant quest to understand the underlying molecular biology of breast cancer so as to plan better treatment options. The purpose of the current study was to characterize the expression of histone deacetylases-3 (HDAC3), a member of class I HDACs, and assess the clinical significance of HDAC3 in breast cancer. METHODS: Quantitative real-time polymerase chain reaction, immunohistochemistry, and western blot analysis were used to examine messenger RNA and protein expression levels. The relationships between HDAC3 expression and clinicopathological variables were analyzed. MTT assays were used to detect cell proliferation. Glucose-uptake, lactate, adenosine triphosphate, and lactate dehydrogenase assays were employed to detect aerobic glycolysis. Chromatin immunoprecipitation was used to detect microRNA-31 (miR-31) promoter binding. RESULTS: Our data revealed that HDAC3 was upregulated in breast cancer tissue compared with matched para-carcinoma tissues, and high levels of HDAC3 were positively correlated with advanced TNM stage and N stage of cancer. Furthermore, overexpression of HDAC3 promoted breast cancer cell-proliferation and aerobic glycolysis. The functional involvement of HDAC3 was related in part to the repression of miR-31 transcription via decreased histone H3 acetylation at lysine K9 levels of the miR-31 promoter. Survival analysis revealed that the level of HDAC3 was an independent prognostic factor for breast cancer patients. CONCLUSION: Our findings revealed that HDAC3 served as an oncogene that could promote cell proliferation and aerobic glycolysis and was predictive of a poor prognosis in breast cancer. HDAC3 participated in the cell proliferation of breast cancer, which may prove to be a pivotal epigenetic target against this devastating disease.


Subject(s)
Humans , Acetylation , Adenosine Triphosphate , Blotting, Western , Breast Neoplasms , Breast , Cell Proliferation , Chromatin Immunoprecipitation , Epigenomics , Glycolysis , Histone Code , Histones , Immunohistochemistry , Incidence , L-Lactate Dehydrogenase , Lactic Acid , Lysine , Molecular Biology , Mortality , Oncogenes , Prognosis , Real-Time Polymerase Chain Reaction , Repression, Psychology , RNA, Messenger
8.
Experimental Neurobiology ; : 252-265, 2017.
Article in English | WPRIM | ID: wpr-18847

ABSTRACT

The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.


Subject(s)
Animals , Female , Pregnancy , Rats , Acetylation , Autism Spectrum Disorder , Autistic Disorder , Blotting, Western , Brain , Chromatin Immunoprecipitation , Embryonic Development , Histones , Models, Animal , Neurodevelopmental Disorders , Neurons , Phenotype , Population Characteristics , Ribonucleoproteins , Risk Factors , RNA, Small Interfering , Stem Cells , Synaptophysin , Telomerase , Transfection , Up-Regulation , Valproic Acid
9.
Genomics & Informatics ; : 11-18, 2017.
Article in English | WPRIM | ID: wpr-69983

ABSTRACT

Nowadays, huge volumes of chromatin immunoprecipitation-sequencing (ChIP-Seq) data are generated to increase the knowledge on DNA-protein interactions in the cell, and accordingly, many tools have been developed for ChIP-Seq analysis. Here, we provide an example of a streamlined workflow for ChIP-Seq data analysis composed of only four packages in Bioconductor: dada2, QuasR, mosaics, and ChIPseeker. ‘dada2’ performs trimming of the high-throughput sequencing data. ‘QuasR’ and ‘mosaics’ perform quality control and mapping of the input reads to the reference genome and peak calling, respectively. Finally, ‘ChIPseeker’ performs annotation and visualization of the called peaks. This workflow runs well independently of operating systems (e.g., Windows, Mac, or Linux) and processes the input fastq files into various results in one run. R code is available at github: https://github.com/ddhb/Workflow_of_Chipseq.git.


Subject(s)
Chromatin , Chromatin Immunoprecipitation , Genome , Quality Control , Statistics as Topic
10.
Experimental & Molecular Medicine ; : e398-2017.
Article in English | WPRIM | ID: wpr-158429

ABSTRACT

We have previously demonstrated the expression of GATA-DNA-binding protein (GATA)-3, a transcription factor, in osteoblasts and have verified its function in transducing cell survival signaling. This translational study was further designed to evaluate the roles of GATA-3 in regulating bone healing and to explore its possible mechanisms. A metaphyseal bone defect was created in the left femurs of male ICR mice. Analysis by micro-computed topography showed that the bone volume, trabecular bone number and trabecular thickness were augmented and that the trabecular pattern factor decreased. Interestingly, immunohistological analyses showed specific expression of GATA-3 in the defect area. In addition, colocalized expression of GATA-3 and alkaline phosphatase was observed at the wound site. As the fracture healed, the amounts of phosphorylated and non-phosphorylated GATA-3 concurrently increased. Separately, GATA-3 mRNA was induced during bone healing, and, levels of Runx2 mRNA and protein were also increased. The results of confocal microscopy and co-immunoprecipitation showed an association between nuclear GATA-3 and Runx2 in the area of insult. In parallel with fracture healing, Bcl-XL mRNA was significantly triggered. A bioinformatic search revealed the existence of a GATA-3-specific DNA-binding element in the promoter region of the bcl-x(L) gene. Analysis by chromatin immunoprecipitation assays further demonstrated transactivation activity by which GATA-3 regulated bcl-x(L) gene expression. Therefore, this study shows that GATA-3 participates in the healing of bone fractures via regulating bcl-xL gene expression, owing to its association with Runx2. In the clinic, GATA-3 may be used as a biomarker for diagnoses/prognoses or as a therapeutic target for bone diseases, such as bone fractures.


Subject(s)
Animals , Humans , Male , Mice , Alkaline Phosphatase , Bone Diseases , Cell Survival , Chromatin Immunoprecipitation , Computational Biology , Femur , Fracture Healing , Fractures, Bone , Gene Expression , Immunoprecipitation , Mice, Inbred ICR , Microscopy, Confocal , Osteoblasts , Promoter Regions, Genetic , RNA, Messenger , Transcription Factors , Transcriptional Activation , Up-Regulation , Wounds and Injuries
11.
Experimental & Molecular Medicine ; : e388-2017.
Article in English | WPRIM | ID: wpr-158420

ABSTRACT

We evaluated the role of IL-10- in IL-33-mediated cholesterol reduction in macrophage-derived foam cells (MFCs) and the mechanism by which IL-33 upregulates IL-10. Serum IL-33 and IL-10 levels in coronary artery disease patients were measured. The effects of IL-33 on intra-MFC cholesterol level, IL-10, ABCA1 and CD36 expression, ERK 1/2, Sp1, STAT3 and STAT4 activation, and IL-10 promoter activity were determined. Core sequences were identified using bioinformatic analysis and site-specific mutagenesis. The serum IL-33 levels positively correlated with those of IL-10. IL-33 decreased cellular cholesterol level and upregulated IL-10 and ABCA1 but had no effect on CD36 expression. siRNA-IL-10 partially abolished cellular cholesterol reduction and ABCA1 elevation by IL-33 but did not reverse the decreased CD36 levels. IL-33 increased IL-10 mRNA production but had little effect on its stability. IL-33 induced ERK 1/2 phosphorylation and increased the luciferase expression driven by the IL-10 promoter, with the highest extent within the −2000 to −1752 bp segment of the 5′-flank of the transcription start site; these effects were counteracted by U0126. IL-33 activated Sp1, STAT3 and STAT4, but only the STAT3 binding site was predicted in the above segment. Site-directed mutagenesis of the predicted STAT3-binding sites (CTGCTTCCTGGCAGCAGAA→CTGCCTGGCAGCAGAA) reduced luciferase activity, and a STAT3 inhibitor blocked the regulatory effects of IL-33 on IL-10 expression. Chromatin immunoprecipitation (CHIP) confirmed the STAT3-binding sequences within the −1997 to −1700 and −1091 to −811 bp locus regions. IL-33 increased IL-10 expression in MFCs via activating ERK 1/2 and STAT3, which subsequently promoted IL-10 transcription and thus contributed to the beneficial effects of IL-33 on MFCs.


Subject(s)
Humans , Binding Sites , Cholesterol , Chromatin Immunoprecipitation , Computational Biology , Coronary Artery Disease , Foam Cells , Interleukin-10 , Interleukin-33 , Luciferases , Macrophages , Mutagenesis, Site-Directed , Phosphorylation , RNA, Messenger , Transcription Initiation Site
12.
Journal of Experimental Hematology ; (6): 590-595, 2016.
Article in Chinese | WPRIM | ID: wpr-360042

ABSTRACT

<p><b>OBJECTIVE</b>To study the regulation of SIRT1 by transcription factor SREBP-1 in adipogeneic differentiation of bone marrow mesenchymal stem cells (BMMSC).</p><p><b>METHODS</b>Oil red O staining was used to identify the adipogenic differentiation of BMMSC; the mRNA transcription levels of AP2, LPL, SREBF-1, SIRT1 gene were detected by RT-PCR; the expession level of SREBP-1 was determined by Western-blot. The chromatin immunoprecipitation (ChIP) assay was used to investigate the binding of SREBP-1 to SIRT1 promoter.</p><p><b>RESULTS</b>BMMSC exposed to adipogenesis inducing medium become mature adipocytes at day 14; the mRNA transcription levels of AP2, LPL, SREBF-1, SIRT1 genes were up-regulated in adipocyte differentiation of BMMSC; the protein level of SREBP-1 was higher obviously; SIRT1 gene sequences was succesfully amplified from the genomic DNA immunoprecipitated by SREBP-1 antibody.</p><p><b>CONCLUSION</b>SREBP-1 can bind to the promoter region of the SIRT1 gene in adipogenesis of BMMSC, and may be involved in the transcriptional regulation of the SIRT1 gene.</p>


Subject(s)
Humans , Adipocytes , Cell Biology , Adipogenesis , Cell Differentiation , Cells, Cultured , Chromatin Immunoprecipitation , Gene Expression Regulation , Mesenchymal Stem Cells , Cell Biology , Promoter Regions, Genetic , Sirtuin 1 , Metabolism , Sterol Regulatory Element Binding Protein 1 , Metabolism , Up-Regulation
13.
Experimental & Molecular Medicine ; : e241-2016.
Article in English | WPRIM | ID: wpr-213641

ABSTRACT

CAAT/enhancer-binding protein-beta (C/EBPβ) is a transcription factor that regulates interleukin-1β (IL-1β)-induced catabolic pathways, including the expression of matrix metalloproteinases (MMPs), in chondrocytes. We previously reported that suppressor of cytokine signaling 1 (SOCS1) inhibits IL-1β signaling in chondrocytes. However, the effect of SOCS1 on C/EBPβ has not been explored. To investigate the interaction between SOCS1 and C/EBPβ, we established human SW1353 cells with overexpression or knockdown of SOCS1 or C/EBPβ. Both SOCS1 and C/EBPβ were involved in transcription of MMP-3 and MMP-13. When stimulated with IL-1β, C/EBPβ levels were significantly increased by SOCS1 knockdown and decreased by SOCS1 overexpression. A similar change in IL-1β-induced C/EBPβ expression was observed in SOCS1-transfected human articular chondrocytes. However, C/EBPβ overexpression or knockdown did not change the levels of IL-1β-induced SOCS1. SOCS1 regulated the levels of C/EBPβ mRNA by ubiquitination of C/EBPβ as well as transcriptional regulation. Furthermore, it suppressed the phosphorylation of cAMP response element-binding protein (CREB), an active transcription factor of C/EBPβ. In addition, p38 mitogen-activated protein kinases, a target of SOCS1, was involved in CREB phosphorylation. The chromatin immunoprecipitation assay confirmed that SOCS1 overexpression led to reduced binding of C/EBPβ to the MMP-13 promoter. Taken together, our results demonstrate that SOCS1 downregulates the p38-CREB-C/EBPβ pathway resulting in increased expression of MMPs in chondrocytes.


Subject(s)
Humans , Chondrocytes , Chromatin Immunoprecipitation , Cyclic AMP Response Element-Binding Protein , Matrix Metalloproteinases , p38 Mitogen-Activated Protein Kinases , Phosphorylation , RNA, Messenger , Transcription Factors , Ubiquitin , Ubiquitination
14.
Experimental & Molecular Medicine ; : e271-2016.
Article in English | WPRIM | ID: wpr-210166

ABSTRACT

The C-terminal domain of RNA polymerase II is an unusual series of repeated residues appended to the C-terminus of the largest subunit and serves as a flexible binding scaffold for numerous nuclear factors. The binding of these factors is determined by the phosphorylation patterns on the repeats in the domain. In this study, we generated a synthetic antibody library by replacing the third heavy chain complementarity-determining region of an anti-HER2 (human epidermal growth factor receptor 2) antibody (trastuzumab) with artificial sequences of 7–18 amino-acid residues. From this library, antibodies were selected that were specific to serine phosphopeptides that represent typical phosphorylation patterns on the functional unit (YSPTSPS)₂ of the RNA polymerase II C-terminal domain (CTD). Antibody clones pCTD-1stS2 and pCTD-2ndS2 showed specificity for peptides with phosphoserine at the second residues of the first or second heptamer repeat, respectively. Additional clones specifically reacted to peptides with phosphoserine at the fifth serine of the first repeat (pCTD-1stS5), the seventh residue of the first repeat and fifth residue of the second repeat (pCTD-S7S5) or the seventh residue of either the first or second repeat (pCTD-S7). All of these antibody clones successfully reacted to RNA polymerase II in immunoblot analysis. Interestingly, pCTD-2ndS2 precipitated predominately RNA polymerase II from the exonic regions of genes in genome-wide chromatin immunoprecipitation sequencing analysis, which suggests that the phosphoserine at the second residue of the second repeat of the functional unit (YSPTSPS)2 is a mediator of exon definition.


Subject(s)
Antibodies , Chromatin Immunoprecipitation , Clone Cells , Complementarity Determining Regions , DNA-Directed RNA Polymerases , Exons , Peptides , Phosphopeptides , Phosphorylation , Phosphoserine , ErbB Receptors , RNA Polymerase II , RNA , Sensitivity and Specificity , Serine
15.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 8-12, 2016.
Article in Chinese | WPRIM | ID: wpr-282996

ABSTRACT

<p><b>OBJECTIVE</b>To investigate histone acetylation modification of topoisomerase enzyme Ⅱα (TOPOⅡα) promoter regulation factors in patients with chronic benzene poisoning, to explore the possible regulatory mechanism of TOPOⅡα involved in toxicity of chronic benzene poisoning;</p><p><b>METHODS</b>The bone marrow samples were from 25 chronic benzene poisoning cases and 25 controls. The Chromatin Immunoprecipitation (ChIP) assay was carried out to study the possible mechanism of TOPOⅡα promoter regulation factors expression changes. TOPOⅡα promoter regulation factors mRNA were detected by RT-PCR technique.</p><p><b>RESULTS</b>(1) Compared with the control, the histone H4 acetylation, histone H3 acetylation level of TOPOⅡα promoter regulation factors SP1, ATF-2, SP3, NF-YA, P53, C-MYB, ICBP90, NF-M in chronic benzene poisoning patients decreased, with the significant difference (P<0.05) , except for C-JUN (P>0.05) ; (2) The mRNA expression of TOPOⅡαpromoter regulation factors SP1, NF-YA, C-MYB, C-JUN and NF-M were significantly lower than in the control with the significant difference (P<0.05) , while the expression of SP3、P53 mRNA increased (P<0.05) , ATF-2、ICBP90 mRNA wasn't changed (P>0.05) .</p><p><b>CONCLUSION</b>(1) Chronic benzene poisoning TOPO Ⅱα promoter regulation factors histone modification changes accompanied with mRNA level changed. (2) Histone acetylation modification of topoisomerase enzyme Ⅱα promoter regulation factors takes important role in the benezen's Hematopoietic toxicity.</p>


Subject(s)
Humans , Acetylation , Antigens, Neoplasm , Metabolism , Benzene , Poisoning , Case-Control Studies , Chromatin Immunoprecipitation , Chronic Disease , DNA Topoisomerases, Type II , Metabolism , DNA-Binding Proteins , Metabolism , Histones , Metabolism , Poisoning , Metabolism , Promoter Regions, Genetic , RNA, Messenger , Metabolism
16.
Chinese Medical Journal ; (24): 1355-1362, 2016.
Article in English | WPRIM | ID: wpr-290072

ABSTRACT

<p><b>BACKGROUND</b>The acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.</p><p><b>METHODS</b>Qualitative polymerase chain reaction (PCR), quantitative reverse transcription PCR (RT-PCR), and Western blotting analysis were used to observe the mRNA and protein expression levels of EYA4 in cell lines. Different plasmids (including mutant plasmids) of dual luciferase reporter vector were built to study the binding status of AML1-ETO to the promoter region of EYA4. Chromatin immunoprecipitation assay was used to study the epigenetic silencing mechanism of EYA4. Bisulfite sequencing was applied to detect the methylation status in EYA4 promoter region. The influence of EYA4 gene in the cell proliferation, apoptosis, and cell clone-forming ability was detected by the technique of Cell Counting Kit-8, flow cytometry, and clonogenic assay.</p><p><b>RESULTS</b>EYA4 gene was hypermethylated in AML1-ETO+ patients and its expression was down-regulated by 6-fold in Kasumi-1 and SKNO-1 cells, compared to HL-60 and SKNO-1-siA/E cells, respectively. We demonstrated that AML1-ETO triggered the epigenetic silencing of EYA4 gene by binding at AML1-binding sites and recruiting histone deacetylase 1 and DNA methyltransferases. Enhanced EYA4 expression levels inhibited cellular proliferation and suppressed cell colony formation in AML1-ETO+ cell lines. We also found EYA4 transfection increased apoptosis of Kasumi-1 and SKNO-1 cells by 1.6-fold and 1.4-fold compared to negative control, respectively.</p><p><b>CONCLUSIONS</b>Our study identified EYA4 gene as targets for AML1-ETO and indicated it as a novel tumor suppressor gene. In addition, we provided evidence that EYA4 gene might be a novel therapeutic target and a potential candidate for treating AML1-ETO+ t (8;21) AML.</p>


Subject(s)
Humans , Apoptosis , Genetics , Physiology , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Genetics , Physiology , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit , Genetics , Metabolism , DNA Methylation , Genetics , Epigenesis, Genetic , Genetics , Gene Silencing , HL-60 Cells , Leukemia, Myeloid, Acute , Genetics , Metabolism , Pathology , Oncogene Proteins, Fusion , Genetics , Metabolism , RNA, Small Interfering , Genetics , RUNX1 Translocation Partner 1 Protein , Radioimmunoprecipitation Assay , Trans-Activators , Genetics , Metabolism
17.
Cancer Research and Treatment ; : 676-686, 2016.
Article in English | WPRIM | ID: wpr-26793

ABSTRACT

PURPOSE: Epigenetic alterations of specific genes have recently been identified as diagnostic biomarkers for human cancers. However, there are currently no standardized epigenetic biomarkers for drug sensitivity in human gastrointestinal cancer. Therefore, the aim of this study is to identify a novel epigenetic biomarker in gastrointestinal cancer. MATERIALS AND METHODS: Using bisulfite sequencing and pyrosequencing analysis, DNA methylation patterns of gastric, colon primary tissues and their cancer cells were analyzed, and histone modifications were analyzed using chromatin immunoprecipitation assay. In addition, cancer cells were exposed to cisplatin and treated with a DNA methyltransferase inhibitor. RESULTS: We report that in human gastric and colon cancers, latrophilin 2 (LPHN2) is silenced by epigenetic modifications, including CpG island methylation and aberrant histone modifications. We also confirmed that LPHN2 was silenced by DNA hypermethylation in primary gastric and colon tumor tissues compared to their normal counterparts. Interestingly, we found that cancer cells with methylated LPHN2 showed higher sensitivity to cisplatin. Also, 5-aza- 2′-deoxycytidine combined with cisplatin decreased the cytotoxicity of cisplatin in cancer cells with methylated LPHN2. In addition, LPHN2 knockdown in cancer cells with high LPHN2 expression sensitized these cells to the anti-proliferative effects of cisplatin. CONCLUSION: In human gastrointestinal cancer, we found that LPHN2 is regulated by epigenetic modifications, and that cancer cells with lower LPHN2 expression show higher sensitivity to cisplatin. Therefore, the methylation status of LPHN2 is a potential novel epigenetic biomarker for cisplatin treatment in human gastric and colon cancers.


Subject(s)
Humans , Biomarkers , Chromatin Immunoprecipitation , Cisplatin , Colon , Colonic Neoplasms , CpG Islands , DNA , DNA Methylation , Epigenomics , Gastrointestinal Neoplasms , Histones , Methylation
18.
Experimental & Molecular Medicine ; : e226-2016.
Article in English | WPRIM | ID: wpr-137224

ABSTRACT

Wnt10b, an endogenous inhibitor of adipogenesis, maintains preadipocytes in an undifferentiated state by suppressing adipogenic transcription factors. We have previously demonstrated that Wnt10b transcription during adipogenesis is negatively regulated by X-box-binding protein 1 (XBP1), an important transcription factor of the unfolded protein response. In this report, we demonstrate that XBP1s can directly induce the transcription of microRNA-148a, which in turn mediates the silencing of Wnt10b mRNA during adipogenic differentiation of 3T3-L1 cells. Stability of Wnt10b mRNA was found to be significantly increased by knockdown of XBP1s. Using computational algorithms, a set of microRNAs was predicted to bind Wnt10b mRNA, of which microRNA-148a was selected as a potential target for XBP1s. Our results revealed that microRNA-148a could bind to the 3′UTR of Wnt10b mRNA. Its ectopic expression significantly suppressed both Wnt10b expression and β-catenin activity. When we altered the expression of XBP1 in 3T3-L1 cells, microRNA-148a levels changed accordingly. A potential XBP1 response element was found in the promoter region of microRNA-148a, and XBP1s directly bound to this response element as shown by point mutation analysis and chromatin immunoprecipitation assay. In addition, a microRNA-148a mimic significantly restored adipogenic potential in XBP1-deficient 3T3-L1 cells. These findings provide the first evidence that XBP1s can regulate Wnt10b by a post-transcriptional mechanism through directly inducing microRNA-148a.


Subject(s)
3T3-L1 Cells , Adipogenesis , Chromatin Immunoprecipitation , Ectopic Gene Expression , MicroRNAs , Point Mutation , Promoter Regions, Genetic , Response Elements , RNA, Messenger , Transcription Factors , Unfolded Protein Response
19.
Experimental & Molecular Medicine ; : e226-2016.
Article in English | WPRIM | ID: wpr-137221

ABSTRACT

Wnt10b, an endogenous inhibitor of adipogenesis, maintains preadipocytes in an undifferentiated state by suppressing adipogenic transcription factors. We have previously demonstrated that Wnt10b transcription during adipogenesis is negatively regulated by X-box-binding protein 1 (XBP1), an important transcription factor of the unfolded protein response. In this report, we demonstrate that XBP1s can directly induce the transcription of microRNA-148a, which in turn mediates the silencing of Wnt10b mRNA during adipogenic differentiation of 3T3-L1 cells. Stability of Wnt10b mRNA was found to be significantly increased by knockdown of XBP1s. Using computational algorithms, a set of microRNAs was predicted to bind Wnt10b mRNA, of which microRNA-148a was selected as a potential target for XBP1s. Our results revealed that microRNA-148a could bind to the 3′UTR of Wnt10b mRNA. Its ectopic expression significantly suppressed both Wnt10b expression and β-catenin activity. When we altered the expression of XBP1 in 3T3-L1 cells, microRNA-148a levels changed accordingly. A potential XBP1 response element was found in the promoter region of microRNA-148a, and XBP1s directly bound to this response element as shown by point mutation analysis and chromatin immunoprecipitation assay. In addition, a microRNA-148a mimic significantly restored adipogenic potential in XBP1-deficient 3T3-L1 cells. These findings provide the first evidence that XBP1s can regulate Wnt10b by a post-transcriptional mechanism through directly inducing microRNA-148a.


Subject(s)
3T3-L1 Cells , Adipogenesis , Chromatin Immunoprecipitation , Ectopic Gene Expression , MicroRNAs , Point Mutation , Promoter Regions, Genetic , Response Elements , RNA, Messenger , Transcription Factors , Unfolded Protein Response
20.
International Neurourology Journal ; : S76-S83, 2016.
Article in English | WPRIM | ID: wpr-55826

ABSTRACT

This article is a mini-review that provides a general overview for next-generation sequencing (NGS) and introduces one of the most popular NGS applications, whole genome sequencing (WGS), developed from the expansion of human genomics. NGS technology has brought massively high throughput sequencing data to bear on research questions, enabling a new era of genomic research. Development of bioinformatic software for NGS has provided more opportunities for researchers to use various applications in genomic fields. De novo genome assembly and large scale DNA resequencing to understand genomic variations are popular genomic research tools for processing a tremendous amount of data at low cost. Studies on transcriptomes are now available, from previous-hybridization based microarray methods. Epigenetic studies are also available with NGS applications such as whole genome methylation sequencing and chromatin immunoprecipitation followed by sequencing. Human genetics has faced a new paradigm of research and medical genomics by sequencing technologies since the Human Genome Project. The trend of NGS technologies in human genomics has brought a new era of WGS by enabling the building of human genomes databases and providing appropriate human reference genomes, which is a necessary component of personalized medicine and precision medicine.


Subject(s)
Humans , Chromatin Immunoprecipitation , Computational Biology , DNA , Epigenomics , Genetics, Medical , Genome , Genome, Human , Genomics , High-Throughput Nucleotide Sequencing , Human Genome Project , Methylation , Precision Medicine , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL